Generation of porous microcellular 85/15 poly (DL-lactide-co-glycolide) foams for biomedical applications.
نویسندگان
چکیده
Porous 85/15 poly (DL-lactide-co-glycolide) or PLGA foams were produced by the pressure quench method using supercritical CO2 as the blowing agent. The rate of CO2 uptake and CO2 equilibrium concentration in PLGA at different processing conditions were studied by performing sorption experiments. The effects of saturation pressure and temperature on average cell size and relative density of the resulting foams were also studied. The time required to approach equilibrium exhibited a minimum with increasing saturation pressure. The diffusion coefficient and equilibrium concentration of CO2 in PLGA increased with an increasing pressure in an approximately linear relationship. Porous PLGA foams were generated with relative densities ranging from 0.107 to 0.232. Foams showed evidence of interconnected cells with porosities as high as 89%. The pore size ranged from 30 to 100 microm.
منابع مشابه
Effects of lactide monomer on the hydrolytic degradation of poly(lactide-co-glycolide) 85L/15G.
The hydrolytic degradation of oriented poly(L-lactide-co-glycolide) 85 L/15 G (PLGA 85/15) sample materials with various amounts of lactide monomer was monitored in vitro at 37 °C. The materials were manufactured from medical grade PLGA 85/15 by a two-step melt extrusion-die drawing process. Results showed that the hydrolytic degradation rate depended highly on the lactide monomer content, whic...
متن کاملBone Marrow Cell Colonization Of, and Extracellular Matrix Expression On, Biodegradable Polymers
Poly(DL-lactide-co-glycolide)s (PLGAs) have been proposed as substrata for bone tissue engineering. In the experiments reported herein, we sought to identify the optimum lactide to glycolide ratio, from the series 85:15, 75:25, 50:50, or poly-(DL-lactide) (PLA), for the elaboration of bone matrix by cultured rat bone marrow cells (RBMC) on two-dimensional substrates. Having identified PLGA 75:2...
متن کاملPoly(DL-lactide-co-glycolide) Nanospheres for the Sustained Release of Folic Acid
Biodegradable polymers have become the materials of choice for a variety of biomedical applications. In particular, poly(DL-lactide-co-glycolide) nanoparticles have been studied as a material for drug delivery with the controlled release. In this paper we are describing a simple method for obtaining the system for targeted and controlled delivery of folic acid in the body. Folic acid was encaps...
متن کاملGrowth of continuous bonelike mineral within porous poly(lactide-co-glycolide) scaffolds in vitro.
Strategies to engineer bone have focused on the use of natural or synthetic degradable materials as scaffolds for cell transplantation or as substrates to guide bone regeneration. The basic requirements of the scaffold material are biocompatibility, degradability, mechanical integrity, and osteoconductivity. A major design problem is satisfying each of these requirements with a single scaffold ...
متن کاملImmune Augmentation of Single Contact Hepatitis B Vaccine by Using PLGA Microspheres as an Adjuvant
The present study was aimed to replace the alum type adjuvant for hepatitis B vaccine. The hepatitis B vaccine was encapsulated in poly (DL-lactide-co-glycolide) microspheres by solvent evaporation technique. The formulated microspheres were characterized in terms of morphology, particle size analysis, in vitro release study and in vivo immune response in male Wistar rats. The FT IR spectrum il...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomaterials
دوره 25 13 شماره
صفحات -
تاریخ انتشار 2004